5 Basic Indices Rules/Laws

Rule 2: Multiply the powers with a bracket
notice how the base does not change (x stays x)

Why is this rule true?

We have x^{2} three times

$=x^{2} \times x^{2} \times x^{2}$
Now use rule 1 to add the powers Hence, we multiply the powers when we have a bracket

Simplify $\left(4 x^{2} y^{3}\right)^{4}$
$\left(4 x^{2} y^{3}\right)^{4}$
$\left.\left.\left.=(4)^{4}\left(x^{2}\right)^{4}\right)^{4}\right)^{3}\right)^{4}$
$=256 x^{2} x^{212}$
Rule 3: Rule 2 can be extended for when we have more than 1 term inside the
bracket
$\left(c x^{a} y^{b}\right)^{d}=(c)^{d}\left(x^{a}\right)^{d}\left(y^{b}\right)^{d}$
Now apply rule 2 for each
$=c^{d} x^{a d} y^{b d}$

Common Mistakes

Mistake 1: The base DOES NOT change $2^{3} \times 2^{6}$ doesn't equal 4^{9} Instead, $2^{3} \times 2^{6}=2^{9}$

Mistake 2: Don't ignore the power when it isn't written (it means power 1) $2 x^{2} \times 3 x$ doesn't equal $6 x^{2}$ Instead, $2 x^{2} \times 3 x^{1}=6 x^{3}$

Mistake 3: The power affects the first
$\left(2 x^{2} y^{4}\right)^{3}$ doesn't equal $2 x^{6} y^{12}$ Instead, $\left(2 x^{2} y^{4}\right)^{3}=8 x^{6} y^{12}$

Mistake 4: We raise the first number to the power, we don't
multiply it
$(5 x)^{3}$ does not equal $15 x^{3}$ Instead, $(5 x)^{3}=5^{3} x^{3}=125 x^{3}$

VERY COMMON Mistakes

Mistake 5: Don't mistake rule 3 when there is a sign $(+$ or -$)$ in the middle.
$(2 x)^{2}$ is not the same as $(2+x)^{2}$
$(2 x)^{2}=4 x^{2}$
whereas $(2+x)^{2}=4+4 x+x^{2}$ The latter is expanding brackets

Mistake 6: Don't confuse addition/
subtraction with multiplication.
We can only add/subtract "like" terms and when we add/subtract the algebra part doesn't change

- $2 x+3 x$ is not the same as $2 x \times 3 x$ $2 x+3 x=5 x$ by collecting like terms $2 x \times 3 x=6 x^{2}$ using indices rule 1
- $2 x^{2}+3 x^{2}$ is not the same as $2 x^{2} \times 3 x^{2}$ $2 x^{2}+3 x^{2}=5 x^{2}$ but $2 x^{2} \times 3 x^{2}=6 x^{4}$
- $2 x^{2}+3 x^{3}$ cannot be done/simplified but $2 x^{2} \times 3 x^{3}=6 x^{5}$

Common Mistakes
Mistake 1: The base DOES NOT
$2^{9} \div 2^{6}$ doesn't equal 1^{3} Instead, $2^{9} \div 2^{6}=2^{3}$

Mistake 2: Don't ignore the power when it isn't written (it means power 1)
$6 x^{2} \div 3 x$ doesn't equal $2 x^{2}$
Instead, $6 x^{2} \div 3 x^{1}=2 x$
Mistake 3: Don't let the fraction division notation $24 x^{6} y^{2}$ $\frac{24 x^{4} y^{3}}{32}$
Deal with each part separately $\frac{24 x^{6} y^{2}}{32 x^{4} y^{3}}$

$$
=\frac{3 x^{2}}{4 y}
$$

How did we get this?
Think of it as simplifying $\frac{24}{32}$ which is $\frac{3}{4}$ and there are $6 x^{\prime}$ s and in the numerator and $4 x^{\prime}$ s and
in the denominator

$\frac{3 x x x x x x y y}{4 x x x x y y y y}$

We cross off the corresponding matching pairs

$\frac{3 x x x x x x}{4 x x x x}$

We have $2 x^{\prime}$ s left in the numerator and $1 y$ left in the denominator

$$
=\frac{3 x^{2}}{4 v}
$$

OR:
Just think when we move the powers between numerator and denominators we subtract them
$\frac{24 x^{6} y^{2}}{32 x^{4} y^{3}}=\frac{24 x^{6-4}}{32 y^{3-2}}=\frac{3 x^{2}}{4 y}$

Rule 1: Raising to a power of zero Anything to the power of 0 is always $(\text { ANYTHING non zero })^{0}=1$

$2^{0}=1$
$x^{0}=1$
$(2 x)^{0}=1$
$\left(\frac{2}{3}\right)^{0}=1$

Rule 2: Raising a fraction to a power:
$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
Apply the power to both the numerator and denominator

Simplify $\left(\frac{2}{3}\right)^{3}$
$\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}$
$=\frac{8}{27}$

Note: If more than 1 "element" inside the bracket we then use multiplication rule 3

Simplify $\left(\frac{2 x}{3 y^{2}}\right)^{3}$

$\left(\frac{2 x}{3 y^{2}}\right)^{3}=\frac{(2 x)^{3}}{\left(3 y^{2}\right)^{3}}$
$=\frac{(2)^{3}(x)^{3}}{(3)^{3}\left(y^{2}\right)^{3}}$
$=\frac{2^{3} x^{3}}{3^{3} y^{6}}$

$$
=\frac{8 x^{3}}{27 y^{6}}
$$

Rule 3: Raising negative numbers to a power:
(positive number) $)^{\text {even power }}=+$ (posiitve number) odd power $=+$ but
(negative number) ${ }^{\text {even power }}=+$ (negative number) ${ }^{\text {odd power }}=-$

Example 1:

Simplify $(-2)^{4}$ versus $-(2)^{4}$
$(-2)^{4}=-2 \times-2 \times-2 \times-2=16$
$-2^{4}=-(2 \times 2 \times 2 \times 2)=-16$
They are not the same thing! $(-2)^{4}=16$ and $-(2)^{4}=-16$

Example 2:
Simplify $(-2)^{3}$ versus $-(2)^{3}$
$(-2)^{3}=-2 \times-2 \times-2=-8$
$-2^{3}=-(2 \times 2 \times 2)=-8$
Here they are the same thing!
$(-2)^{3}=-8$ and $-(2)^{3}=-8$

Rule 1: $x^{-n}=\frac{1}{x^{n}}$ and $(a b)^{-n}=\frac{1}{(a b)^{n}}$
The easiest way to think of this rule is that if we move terms between the numerator and denominator, the POWER of what is being moved changes(swaps/reverses) its sign (a positive becomes a negative and vice versa)

Simplify 2^{-3}

$$
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
$$

We moved the power -3 from the numerator down to the denominator and reversed the sign (in other words - became +). Note: 2^{-3} means $\frac{2^{-3}}{1}$ hence the power was in the numerator originally and negative. We then moved it to the denominator and it became
positive. There is a 1 in the numerator since the

Rule 2: Raising fractions to negative powers

$$
\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}=\frac{y^{n}}{x^{n}} .
$$

We flip the fraction and change the sign
Why is this rule true?
Way 1: Flip the fraction and the power becomes positive. $\left(\frac{y}{x}\right)^{n}$. Now raise both to the power n giving $\frac{y^{n}}{x^{n}}$ Way 2: Apply the power to both the numerator and denominator first to get $\frac{x^{-n}}{y^{-n}}$.
Now deal with the negative powers which gives
$\frac{y^{n}}{x^{n}}$
Way 3: Get rid of the negative power first by writing over

Now raise both to the power n giving $\frac{y^{n}}{x^{n}}$
Notice how writing a fraction over 1 just flips the fraction and hence just leads to way 1

> Simplify $\left(\frac{64}{15}\right)^{-\frac{2}{3}}$
> $\left(\frac{64}{125}\right)^{-\frac{2}{3}}$. Flip the fraction $\left(\frac{125}{64}\right)^{\frac{2}{3}}$
> $\left(\frac{125}{64}\right)^{\frac{2}{3}}=\frac{125^{\frac{2}{3}}}{643^{\frac{2}{3}}}=\frac{25}{16}$

Rational Powers (Fractional Powers)
$a^{\frac{n}{m}}=(\sqrt[m]{a})^{n}$
"ROOT AND THEN POWER
Note: $x^{\frac{1}{m}}=\sqrt[m]{x}$

Simplify $27^{\frac{2}{3}}$
$27^{\frac{2}{3}}$
Root
$(\sqrt[3]{27})$
(3) ${ }^{2}$

Power
$=3^{2}$
$=9$
$=9$

Simplify $\left(\frac{64 x^{6} z^{12}}{27 y^{3}}\right)^{\frac{1}{3}}$
$\left(\frac{1+2 x^{2}}{2 c^{2}}\right)^{2}-$
$=\frac{\left(64 x^{6} z^{12}\right)^{\frac{1}{3}}}{\left(27 y^{3}\right)^{\frac{1}{3}}}$
$=\frac{64^{\frac{1}{3}}\left(x^{6}\right)^{\frac{1}{3}}\left(z^{12}\right)^{\frac{1}{3}}}{2^{\frac{1}{3}}\left(y^{3}\right)^{\frac{1}{3}}}$
$=\frac{64^{\frac{1}{3}} x^{2} z^{4}}{2^{7^{3}} y}$
$=\frac{4 x^{2} z^{4}}{3 y}$

Common Mistakes

$$
\sqrt{x}=x^{\frac{1}{2}}
$$

We drop the 2 for square root. When nothing is written to the left of the root it means square root

© mymathscloud

